martes, 4 de septiembre de 2012

DIAGRAMA DEL CUERPO LIBRE

Un diagrama de cuerpo libre es una representación gráfica utilizada a menudo por físicos e ingenieros para analizar las fuerzas que actúan sobre un cuerpo libre. El diagrama de cuerpo libre es un elemental caso particular de un diagrama de fuerzas. En español, se utiliza muy a menudo la expresión diagrama de fuerzas como equivalente a diagrama de cuerpo libre, aunque lo correcto sería hablar de diagrama de fuerzas sobre un cuerpo libre o diagrama de fuerzas de sistema aislado. Estos diagramas son una herramienta para descubrir las fuerzas desconocidas que aparecen en las ecuaciones del movimiento del cuerpo. El diagrama facilita la identificación de las fuerzas y momentos que deben tenerse en cuenta para la resolución del problema. También se emplean para el análisis de las fuerzas internas que actúan en estructuras.


Elaboración

Un esquema del cuerpo en cuestión y de las fuerzas que actúan sobre él representadas como vectores. La elección del cuerpo es la primera decisión importante en la solución del problema. Por ejemplo, para encontrar las fuerzas que actúan sobre una bisagra o un alicate,es mejor analizar solo una de las dos partes, en lugar del sistema entero, representando la segunda mitad por las fuerzas que ejerece sobre la primera.

Lo que hay que incluir

El esquema del cuerpo debe llegar solo al nivel de detalle necesario. Un simple esbozo puede ser suficiente y en ocasiones, dependiendo del análisis que se quiera realizar, puede bastar con un punto.
Todos las fuerzas externas se representan mediante vectores etiquetados de forma adecuada. Las flechas indican la dirección y magnitud de las fuerzas y, en la medida de lo posible, deberían situarse en el punto en que se aplican.
Solo se deben incluir las fuerzas que actúan sobre el objeto, ya sean de rozamiento, gravitatorias, normales, de arrastre o de contacto. Cuando se trabaja con un sistema de referencia no inercial, es apropiado incluir fuerzas ficticias como la centrífuga.
Se suele trabajar con el sistema de coordendas más conveniente, para simplificar las ecuaciones. El sentido del eje x puede hacerse coincidir con la dirección de descenso de un plano inclinado, por ejemplo, y así la fuerza de rozamiento sólo tiene componente en esa coordenada, mientras que la normal sigue el eje y. La fuerza gravitatoria, en este caso , tendrá componentes según los dos ejes, mg sen(theta) in el x y mg cos(theta) en el y, donde theta es el ángulo que forma el plano con la superficie horizontal.

Lo que no hay que incluir

Las fuerzas que el cuerpo ejerce sobre otros cuerpos. Por ejemplo, si una pelota permanece en reposo sobre una mesa, la pelota ejerce una fuerza sobre ésta, pero en el diagrama de cuerpo libre de la primera solo hay que incluir la fuerza que la mesa ejerce sobre ella.
También se excluyen las fuerzas internas, las que hacen que el cuerpo sea tratado como un único sólido. Por ejemplo, si se analiza las fuerzas que aparecen en los soportes de una estructura mecánica compleja, como el tablero de un puente, las fuerzas internas de las distintas partes que lo forman no se tienen en cuenta.

Suposiciones

El diagrama de cuerpo libre refleja todas las suposiciones y simplificaciones que se han hecho para analizar el problema. Si el cuerpo en cuestión es un satélite en órbita y lo único que se desea es encontrar su velocidad, un punto puede ser la mejor opción. Los vectores deben colocarse y etiquetarse con cuidado para evitar suposiciones que condicionen el resultado. En el diagrama ejemplo de esta entrada, la situación exacta de la fuerza normal resultante que la rampa ejerce sobre el bloque solo puede encontrarse después de analizar el movimiento o de asumir que se encuentra en equilibrio.

Ejemplo

El diagrama de cuerpo libre del bloque sobre el plano inclinado es una aplicación sencilla de estos principios:
  • Todos los soportes y estructuras se han sustituido por las fuerzas que ejercen sobre el bloque:
  • mg: peso del bloque.
  • N: Fuerza normal del plano sobre el bloque.
  • Ff: fuerza de rozamiento entre el bloque y el plano.
  • Los vectores muestran la dirección y el punto de aplicación.
  • Se acompaña del sistema de referencia que se ha usado para describir los vectores.

No hay comentarios:

Publicar un comentario